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Fábio J. F. Gonçalves1, Elson J. Silva2, Renato C. Mesquita3, and Rodney R. Saldanha4

1Graduate Program in Electrical Engineering and 2,3,4Department of Electrical Engineering,
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A possible strategy for avoiding singular material parameters in a transformation-based cloak involves an out-of-plane stretching,
calculated to compensate the in-plane singular transformation. In this paper, we use numerical simulations to analyze the relation
between the out-of-plane transformation, the resulting material anisotropy and the total scattering cross width. Moreover, because
discretization in layers is a common step in a practical design, we also explore its influence, considering a further optimization stage.

Index Terms—Cloaking, Coordinate transformation, Electromagnetic metamaterials, Scattering cross section.

I. INTRODUCTION

S INCE the introduction of Transformation Optics (TO) and
metamaterials [1], the research in invisibility devices has

become one of the most active topics in electromagnetics.
Many strategies have been proposed so far, but TO is still
a reference of ideal cloaking. It is based on the invariance of
Maxwell’s Equations under a coordinate transformation, so it
can be interpreted as a change in the coordinates or a change
in the materials [1]–[3]. The transformation can be analytically
described for simple geometries, whilst numerical methods are
used for the complex ones. In both cases, however, the designer
faces some practical difficulties when implementing the ideal
parameters (as revised in II): singularity, continuous non-
homogeneity and high anisotropy. In face of it, strategies based
on the optimization of a layered cloak became attractive [4]. In
many cases, however, TO is still important for having a good
start point. Therefore, here we propose a design methodology
of a layered cloak with finite properties, which could be used
as input in a further optimization process.

II. METHODOLOGY

A. Arbitrary Numerical Transformation by Laplace Equation

An arbitrary cloak can be designed by solving the Laplace
Equation in the deformed space Ω′, establishing the mapping
between the original (virtual) space Ω and the deformed
(physical) space Ω′ [5]. The solution x defines the inverse
mapping x = x(x′), which describes how a given point x ∈ Ω
is a function of x′ ∈ Ω′. As illustrated in Fig. 1, Ω is bounded
by ∂Ω+, whereas Ω′ is bounded by ∂Ω′− and by ∂Ω′+. Laplace
Equation ∇′2x = 0 governs the problem in Ω′, subjected to
the following boundary conditions: x = O, if x′ ∈ ∂Ω′− and
x = x′, if x′ ∈ ∂Ω′+. Note that at this external boundary the
unitary mapping guaranties a smooth transition. Conversely, the
point O ∈ Ω is mapped to the whole internal boundary ∂Ω′−,
which corresponds to the object to be hidden. This singular
transformation (an infinitesimal “invisible” point expanded into
a finite region) leads to singular material properties.

Fig. 1. Arbitrary domains Ω and Ω′ involved in the coordinate transformation.

B. Definition of the Material

The partial derivatives of x with respect to x′ define the
Jacobian transformation matrix A (Aij = ∂xi/∂x

′
j), which

is used to calculate the relative permittivity and permeability
tensors (ε′ and µ′, respectively), as in (1). They also can be
defined by the stretches λ in the principal directions [5], [6]:

α′ =
AαAT

|A|
= diag

[
λ1
λ2λ3

,
λ2
λ1λ3

,
λ3
λ1λ2

]
; α = ε, µ. (1)

Due to the singular transformation, the stretch λ2 tends
to infinity near ∂Ω′−, then ε′ and µ′ also become singular.
Originally, there is no out-of-plane distortion, that is, λ3 = 1.
It could be, however, used to compensate the divergence in λ2
making λ̃3 = C0 (|x′1 − x1|+|x′2 − x2|)λ2 + 1, which leads
to ε̃′ and µ̃′ with only finite values [6]. Note that λ̃3 = 1 if
x = x′ and the constant C0 controls the out-of-plane stretching
in the new non-singular transformation described by Ã.

C. Anisotropy and a Metric for Evaluating the Material

Ã defines how anisotropic ε̃′ and µ̃′ are. In order to measure
it, we use the anisotropy metric K̃ = trace(Ã

T
Ã)/3|Ã|. Note

that K̃ ≥ 1 and in fact, it is more appropriated to analyze
the maximum anisotropy K̃max [7], especially because we are
mainly interested in reducing the peak values.

D. Discretization in Homogeneous Layers

The spatially variant tensors (continuous non-homogeneity)
are another challenge in realizing transformation-based cloaks.



Then, the material profile is usually approximated by discrete
homogeneous layers. Moreover, optimization is often used to
achieve a better cloak [4]. In fact, in a typical TO cloak the
invisibility is quite affected if the extreme values at the singular
region are not well represented [2]. When using a non-singular
cloak, however, the finite properties are more suitable for
discretization in layers and permit a more proper simulation.

Nevertheless, when dividing in layers other crucial issues
emerge, such as: (a) how to define the homogenized material?
(b) how many layers? (c) is the impedance well matched
between them? (d) is the layered cloak dispersive?

III. RESULTS

Here we assume a z-invariant geometry under a TMz (Hx,
Hy , Ez) incident wave in x+ direction and evaluate different
configurations by K̃max and by its total scattering cross width
σtot (always normalized by the uncloaked case, in which σtot ≡
1). We study the circular cylinder cloak with inner radius a
and outer radius b, keeping a = free-space wavelength. For
this stated problem, only the in-plane permeability components
and the out-of-plane permittivity component become relevant.

A. Cloak with Continuous Non-Homogeneous Material

Figure 2 shows K̃max and σtot for three different b/a ratios
and eight values for C0, including C?

0 = 5.61, that is the value
achieved by minimizing K̃max. Intuitively, the thinner the cloak,
the higher K̃max. Besides, in general lower C0 achieves lower
σtot, but with higher K̃max. Higher C0 is not good at all.
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Fig. 2. Maximum anisotropy (K̃max) and the total scattering cross width
(σtot), depending on the thickness (b/a) and on the stretching factor (C0).

B. Cloak with Discrete Layers of Homogeneous Material

Now let us get the cloak with b/a = 2, divide it in 10
equidistant layers and assume that the homogenized material
for a given layer Ωlayer would be simply the one with K̃max

closest to the average K̃max in Ωlayer. Firstly, we tested that
previously calculated C?

0 in all the layers. Secondly, we cal-
culated a C?layer

0 for each layer without care about impedance
matching. None of these configurations, however, decreased
σtot so much (σtot ' 0.24), indicating that the transition to a
layered media is not straightforward. In spite of this, based
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Fig. 3. Maximum anisotropy (K̃max) and the total scattering cross width
(σtot) as a function of the stretching factor C0 for the layered cloak.

on Fig. 2, we decided to explore the interval 1 < C0 < 20
(approximately K̃max < 10, σtot < 0.1 for the continuous
media). When covering this C0 range in 0.5 steps (see Fig.
3), we found that, for instance, C0 = 9.5 makes σtot = 0.086,
K̃max = 2.23, a quite good preliminary result, considering that
no optimization of this layered media was performed.

IV. CONCLUSION

In the context of designing cloaks with finite parameters,
we discussed aspects regarding its discretization after a sin-
gularity/anisotropy reduction. We believe that the exposed
ideas and results are useful for setting a starting point for an
optimization process. Henceforth, at least two strategies can
be projected: (a) finding the optimal unique C0 for the layered
cloak which minimizes σtot under certain material restrictions
(i.e. maximum K̃max); (b) using different C?layer

0 for each layer,
but forcing the impedance matching at the interfaces (similarly
to the smooth transition between free-space and the outer
interface of the cloak, where λ̃3 = 1). We intend to explore
these strategies in the extended paper and in future works.
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